Solr Bundle

For use with eZ Publish 5.4, go to the corresponding documentation page which covers
the v1.0 version of the bundle compatible with eZ Publish 5.4.

What is Solr Search Engine Bundle?

ezplatform-solr-search-engine,as the package is called, aims to be a transparent drop-in
replacement for the SQL-based "Legacy" search engine powering eZ Platform Search API by
default. When you enable Solr and re-index your content, all your existing Search queries using
SearchService will be powered by Solr automatically. This allows you to scale up your eZ Platform
installation and be able to continue development locally against SQL engine, and have a test
infrastructure, Staging and Prod powered by Solr. This removes considerable load from your
database. See Architecture for further information on the architecture of eZ Platform.

Status of features:

«* Able to handle all eZ Platform queries
«* Much more suitable for handling field criteria (performance)

«*| Scoring for content queries and sorting by them by default

~* Indexing plugins (Solr Bundle >=v1.2)

«* Solr 6 support (Solr Bundle >=v1.3)
«* Scoring for Location queries and sorting by them by default

® Work in progress:

Faceting (possible to write your own since v1.0, ContentType/Section/User
implemented since v1.4, suggested further changes to the API for Faceting can be
found here)

«* Index time Boosting (Solr Bundle >=v1.4)
® Future:
Solr cloud support

Highlighting
Spell checking

Query time Boosting

How to set up Solr Search engine

Step 0: Enable Solr Bundle

Not needed with eZ Platform
This step is not needed as of eZ Platform 15.09, however it is kept here for reference in
case you have previously disabled the bundle.

1. Check in composer.json if you have the ezsyst ens/ ezpl at f or m sol r - sear ch- engi
ne package, if not add/update composer dependencies:

command line

conposer require --no-update
ezsystens/ ezpl atf orm sol r-sear ch-engi ne: ~1. 0
conposer update

2. Make sure EzPubl i shSol r Sear chEngi neBundl e is activated with the following line in

In this topic:

® What is Solr Search Engine

Bundle?

® How to set up Solr Search

engine
L]

Step 0: Enable Solr
Bundle

Step 1: Configuring
& Starting Solr
Step 2: Configuring
bundle

Step 3: Configuring
repository with the
specific search
engine

Step 4: Clear prod
cache

Step 5: Run CLI
indexing command

® Configuring the Solr Search
engine Bundle

Boost configuration

® Extending the Solr Search
engine Bundle

Document Field
Mappers

® Providing feedback

Related:

® Browsing, Finding/Searching,
viewing content using the

API

https://github.com/ezsystems/ezplatform-solr-search-engine
https://doc.ez.no/display/DEVELOPER/Architecture%3A+An+Open+Source+PHP+CMS+Built+On+Symfony2+Full+Stack
https://doc.ez.no/display/DEVELOPER/Browsing,+finding,+viewing#Browsing,finding,viewing-PerformingaFacetedSearch
https://github.com/ezsystems/ezpublish-kernel/pull/1960
https://doc.ez.no/display/DEVELOPER/Browsing%2C+finding%2C+viewing
https://doc.ez.no/display/DEVELOPER/Browsing%2C+finding%2C+viewing
https://doc.ez.no/display/DEVELOPER/Browsing%2C+finding%2C+viewing
https://doc.ez.no/display/EZP/Solr+Search+Engine+Bundle

the app/ AppKer nel . php file: new EzSyst ens\ EzPI at f or nSol r Sear chEngi neBund
| e\ EzSyst ensEzPI at f or nSol r Sear chEngi neBundl e()

Step 1: Configuring & Starting Solr

The example presents a configuration with single core, look to Solr documentation for
configuring Solr in other ways, including examples.

Download and configure

Solr 4.10.4

First, download and extract Solr. Solr Bundle 1.x supports Solr 4.10.4:
® solr-4.10.4.tgz or solr-4.10.4.zip

Secondly, copy configuration files needed for eZ Solr Search Engine bundle, in the example below
from the root of your project to the place you extracted Solr:

Command line example

Make sure to replace the /opt/solr/ path with where
you have pl aced Solr

cp -R

vendor/ ezsyst ens/ ezpl at f or m sol r- sear ch-engi ne/ | i b/ Resou
rces/config/solr/*

/opt/sol r/ exanpl e/ solr/collectionl/conf/

/opt/solr/bin/solr start -f

Solr 6
SOLR BUNDLE >= 1.3.0 First download and extract Solr, in Solr Bundle 1.3 and higher we also
support Solr 6 (currently tested with Solr 6.4.2):

® solr-6.4.2.tgz or solr-6.4.2.zip

Secondly, copy configuration files needed for eZ Solr Search Engine bundle, here from the root of
your project to the place you extracted Solr:

http://archive.apache.org/dist/lucene/solr/4.10.4/solr-4.10.4.tgz
http://archive.apache.org/dist/lucene/solr/4.10.4/solr-4.10.4.zip
http://archive.apache.org/dist/lucene/solr/6.4.2/solr-6.4.2.tgz
http://archive.apache.org/dist/lucene/solr/6.4.2/solr-6.4.2.zip
https://cwiki.apache.org/confluence/display/solr/Solr+Cores+and+solr.xml
https://wiki.apache.org/solr/CoreAdmin

Command line example

Make sure to replace the /opt/solr/ path with where
you have placed Solr

nkdir -p /opt/solr/server/ez/tenplate

cp -R

vendor/ ezsyst ens/ ezpl at f or m sol r- sear ch-engi ne/ | i b/ Resou
rces/config/solr/* [opt/solr/server/ez/tenplate

cp
/opt/solr/server/solr/configsets/basic_configs/conf/{cur
rency. xm , sol rconfig.xm , stopwords. t xt, synonyns. t xt, el ev
ate.xm} /opt/solr/server/ez/tenplate

cp /opt/solr/server/solr/solr.xm /opt/solr/server/ez

Modify solrconfig.xml to renpve the section that
doesn't agree with your schema

sed -i.bak '/<updateRequest Processor Chain

nanme="add- unknown-fi el ds-to-t he-schema" >/, / <\/ updat eRequ
est Processor Chai n>/ d'
/opt/solr/server/ez/tenplate/solrconfig.xmn

Start Solr (but apply autoconmt settings bel ow first
if you need to)

/opt/solr/bin/solr -s ez

/opt/solr/bin/solr create_core -c collectionl -d
server/ez/tenpl ate

Further configuration

Thirdly, on both Solr 4 and 6 Solr the bundle does not commit solr index changes directly on
repository updates, leaving it up to you to tune this using sol r confi g. xm as best practice
suggests, for example:

solrconfig.xml

<aut oCommi t >
<!-- autoCommit is here left as-is like it is out of
the box in Solr, this controls hard commits for
durability/replication -->
<maxTi ne>${sol r. aut oConmi t. maxTi me: 15000} </ maxTi ne>
<openSear cher >f al se</ openSear cher >
</ aut oConmi t >

<aut oSof t Commi t >

<l-- Soft comits controls mainly when changes becones
visible, by default we change value from-1 (di sabl ed)
to 100ms, to try to strike a bal ance between Solr
performance and stal eness of HttpCache generated by Solr
queries -->

<maxTi me>${sol r. aut oSof t Commi t. naxTi ne: 100} </ maxTi me>
</ aut oSof t Commi t >

Step 2: Configuring bundle
The Solr search engine bundle can be configured in many ways. The config further below assumes

you have parameters set up for solr dsn and search engine (however both are optional), for
example:

parameters.yml

search_engi ne: solr
solr_dsn: "http://1ocal host:8983/solr'

On to configuring the bundle.

Single Core example (default)

Out of the box in eZ Platform the following is enabled for a simple setup:

config.yml

ez_search_engi ne_sol r:
endpoi nt s:
endpoi nt O:
dsn: %ol r_dsn%
core: collectionl
connecti ons:

defaul t:
entry_endpoi nts:
- endpoi ntO
mappi ng:

default: endpointO

Shared Core example

In the following example we have decided to separate one language as the installation contains
several similar languages, and one very different language that should receive proper language
analysis for proper stemming and sorting behavior by Solr:

config.ym
ez_search_engi ne_sol r:
endpoi nts:
endpoi nt O:

dsn: %ol r_dsn%
core: core0
endpoint 1
dsn: %ol r_dsn%
core: corel
connecti ons:

defaul t:
entry_endpoi nts:
- endpoi nt0
- endpointl
nappi ng:

transl ati ons
j pn-JP: endpointl
Other |anguages, for instance eng-US and ot her
western | anguages are sharing core
default: endpointO

Multi Core example

If full language analysis features are preferred, then each language can be configured to separate
cores.

Note: Please make sure to test this setup against single core setup, as it might perform worse than
single core if your project uses a lot of language fallbacks per SiteAccess, as queries will
then be performed across several cores at once.
config.ym
ez_search_engi ne_sol r:
endpoi nt s:
endpoi nt O:
dsn: %ol r_dsn%
core: core0
endpoi nt 1:
dsn: %ol r_dsn%
core: corel
endpoi nt 2:
dsn: %ol r_dsn%
core: core2
endpoi nt 3:
dsn: %ol r_dsn%
core: core3
endpoi nt 4:
dsn: %ol r_dsn%
core: core4d
endpoi nt 5:
dsn: %ol r_dsn%
core: coreb
endpoi nt 6:
dsn: 9ol r_dsn%
core: coreb6
connecti ons:
defaul t:
entry_endpoi nts:
- endpointO
- endpointl
- endpoi nt 2
- endpoi nt 3
- endpoi nt4
- endpoi nt5
- endpoi nt6
mappi ng:
transl ations:
- jpn-JP: endpointl
- eng-US: endpoint2
- fre-FR endpoint3
- ger-DE: endpoint4
- esp-ES: endpoint5
Not really used, but specified here for
fall back if nore | anguages are suddenly added by content adm ns
default: endpointO
Al so use separate core for main | anguages
(differs fromcontent object to content object)
This is useful to reduce nunber of cores
queried for always avail abl e | anguage fall backs
mai n_transl ati ons: endpoint6

Step 3: Configuring repository with the specific search engine

The following is an example of configuring Solr Search Engine, where connect i on name is same
as in the example above, and engine is set to sol r:

ezplatform.yml

ezpubl i sh:
repositories:
defaul t:
storage: ~
sear ch:

engi ne: Y%earch_engi ne%
connection: default

Ysear ch_engi ne%is a parameter that is configured in app/ conf i g/ paraneters. ynl , and
should be changed from its default value "l egacy" to "sol r " to activate Solr as the Search engine.

Step 4: Clear prod cache

While Symfony dev environment keeps track of changes to yml files, pr od does not, so to make
sure Symfony reads the new config we clear cache:

php app/ consol e --env=prod cache: cl ear

Step 5: Run CLI indexing command

Make sure to configure your setup for indexing
Some exceptions might happen on indexing if you have not configured your setup
correctly, here are the most common issues you may encounter:
® Exception if Binary files in database have an invalid path prefix
® Make sure ezpl at f orm ym configuration var _di r is configured
properly.
® |f your database is inconsistent in regards to file paths, try to update
entries to be correct (but make sure to make a backup first).
® Exception on unsupported Field Types
® Make sure to implement all Field Types in your installation, or to
configure missing ones as NullType if implementation is not needed.
® Content not immediately available
® Solr Bundle on purpose does not commit changes directly on
Repository updates (on indexing), but lets you control this using Solr
configuration. Adjust Solr autoSoftCommit visibility of change to
search index) and/or autoCommit (hard commit, for durability and
replication) to balance performance and load on your Solr instance
against needs you have for "NRT".
® Running out of memory during indexing
® |n general make sure to run indexing using prod environment to avoid
debuggers and loggers from filing up memory.
® Stash: Disable in_memory cache as recommended on Persistence
cache for long running scripts.
® Flysystem: You can find further info in: https://jira.ez.no/browse/EZP-25

325.
The last step is to execute the initial indexation of data:

php app/consol e --env=prod --siteaccess=<nane>
ezpl atform sol r_create_i ndex

https://doc.ez.no/display/DEVELOPER/Null+Field+Type
https://cwiki.apache.org/confluence/display/solr/Near+Real+Time+Searching
https://doc.ez.no/display/DEVELOPER/Repository#Repository-PersistenceCache
https://doc.ez.no/display/DEVELOPER/Repository#Repository-PersistenceCache
https://jira.ez.no/browse/EZP-25325
https://jira.ez.no/browse/EZP-25325

SOLR BUNDLE >= 1.2 Since eZ Platform v1.7.0 the ezpl at f or m sol r _cr eat e_i ndex comm
and is deprecated, use php app/ consol e ezpl at f orm r ei ndex instead:

php app/consol e --env=prod --siteaccess=<nane>
ezpl at f orm r ei ndex

Configuring the Solr Search engine Bundle

For configuration of Solr connection for your repository, see How to set up Solr Search
engine above.

Boost configuration

SOLR BUNDLE >= 1.4, ETA JUNE 2017

Boosting currently happens when indexing, so if you change your configuration you'll
need to re-index (this is expected behavior). This can possibly be solved by a
contribution to change boosting to be performed on query time.

Boosting tells the search engine which parts of the content model have more importance when
searching, and is an important part of tuning your search results relevance. Importance is defined
using a numeric value, where 1. 0 is default, values higher than that are more important, and
values lower (down to 0. 0) are less important.

Boosting is configured per connection that you configure to use for a given repository, like in the
example below:

config.yml snippet example

ez_search_engi ne_sol r:
connecti ons:
defaul t:
boost factors:
content _type
Boost a whol e Content Type
article: 2.0
field definition:
Boost a content Field systemw de, or for a given
Content Type

title: 3.0
bl og_post:
Don't boost title of blog
posts that high, but still higher than default
title: 1.5

neta field:
Boost a neta Field (nane, text) systemw de, or
for a given Content Type
name: 10.0
article:
Boost the nmeta full text Field
for article nore than 2.0 set above
text: 5.0

The configuration above will result in the following boosting (Content Type / Field):

article/title: 2.0
news/title: 3.0

bl og_post/title: 1.5

news/ description: 1.0 (default)
article/text (meta): 5.0

bl og_post/nane (neta): 10.0
article/name (neta): 2.0

Extending the Solr Search engine Bundle

Document Field Mappers

SOLR BUNDLE >= 1.2 Starting with eZ Platform 1.7: as a developer you will often find the need to

index some additional data in the search engine. The use cases for this are varied, for example the
data could come from an external source (e.g. from recommendation system), or from an internal
source. The common use case for the latter is indexing data through the Location hierarchy, for
example from the parent Location to the child Location, or in the opposite direction, indexing child
data on the parent Location. The reason might be you want to find the content with fulltext search,
or you want to simplify search for a complicated data model. To do this effectively, you first need to
understand how the data is indexed with Solr Search engine. Documents are indexed per
translation, as Content blocks. In Solr, a block is a nested document structure. In our case, parent
document represents Content, and Locations are indexed as child documents of the Content. To
avoid duplication, full text data is indexed on the Content document only. Knowing this, you have
the option to index additional data on:

all block documents (meaning Content and its Locations, all translations)
all block documents per translation

Content documents

Content documents per translation

Location documents

Indexing additional data is done by implementing a document field mapper and registering it at one
of the five extension points described above. You can create the field mapper class anywhere
inside your bundle, as long as when you register it as a service, the "class" parameter" in your ser
vi ces. yml matches the correct path. We have three different field mappers. Each mapper
implements two methods, by the same name, but accepting different arguments:

® Content Fi el dvapper

® ::accept(Content $content)

® ::mapFi el ds(Content $content)
® Content Transl ati onFi el dvapper

® ::accept(Content $content, $l anguageCode)

® ::mapFiel ds(Content $content, $l anguageCode)
® Locati onFi el dMapper

® ::accept(Location $content)

® ::mapFi el ds(Location $content)

These can be used on the extension points by registering them with the container using service
tags, as follows:

¢ all block documents

® Cont ent Fi el dvapper

® ezpublish. search. sol r. docunent _fi el d_nmapper. bl ock
¢ all block documents per translation

® Content Transl ati onFi el dvapper

® ezpublish.search.solr.field_mapper. bl ock_transl ation
® Content documents

® Cont ent Fi el dvapper

® ezpublish. search. sol r.docunent _fi el d_nmapper. cont ent
® Content documents per translation

® Content Transl ati onFi el dvapper

® ezpublish.search.solr.field_napper.content_translation
® Location documents

® Locati onFi el dvapper

® ezpublish.search.solr.field_nmapper.|ocation

The following example shows how to index data from the parent Location content, in order to make
it available for full text search on the children content. A concrete use case could be indexing
webinar data on the webinar events, which are children of the webinar. Field mapper could then
look something like this:

<?php
namespace M\ Webi nar App;

use
EzSyst ens\ EzPI at f or nSol r Sear chEngi ne\ Fi el dMapper\ Cont ent
Fi el dMapper;

use eZ\ Publi sh\ SPI\ Per si st ence\ Cont ent\ Handl er as

Cont ent Handl er;

use eZ\ Publish\ SPI\ Persi st ence\ Cont ent\ Locat i on\ Handl er
as Locati onHandl er;

use eZ\ Publ i sh\ SPI\ Persi st ence\ Cont ent ;

use eZ\ Publish\ SPI\ Sear ch;

cl ass Webi nar Event Ti t | eFul | t ext Fi el dMapper ext ends
Cont ent Fi el dvapper

{
/**
* @ar
\ eZ\ Publ i sh\ SPI'\ Per si st ence\ Cont ent\ Type\ Handl er
*/
protected $contentHandl er;
/**
* @ar
\ eZ\ Publ i sh\ SPI'\ Per si st ence\ Cont ent\ Locat i on\ Handl er
*/

protected $l ocati onHandl er;

/**
* @aram
\ eZ\ Publ i sh\ SPI\ Per si st ence\ Cont ent \ Handl er
$cont ent Handl er
* @ar am
\ eZ\ Publ i sh\ SPI \ Per si st ence\ Cont ent \ Locat i on\ Handl er
$l ocat i onHandl er
*/
public function __construct(
Cont ent Handl er $cont ent Handl er,
Locati onHandl er $l ocati onHandl er
) {
$t hi s- >cont ent Handl er = $cont ent Handl er;
$t hi s->l ocati onHandl er = $l ocati onHandl er;

}

public function accept (Content $content)

{
/1l ContentType with ID 42 is webinar event

return
$cont ent - >ver si onl nf o- >cont ent | nf o- >cont ent Typel d == 42;

}

public function mapFi el ds(Content $content)

{

$mai nLocationld =
$cont ent - >ver si onl nf o- >cont ent | nf o- >mai nLocati onl d
$l ocation =
$t hi s- >l ocat i onHandl er - >l oad($mai nLocat i onl d);
$parent Location =
$t hi s- >l ocat i onHandl er - >l oad($l ocati on->parent|d);
$parent ContentInfo =
$t hi s- >cont ent Handl er - >l oadCont ent | nf o($par ent Locat i on- >
contentld);

return [
new Sear ch\ Fi el d(
"fulltext',
$par ent Cont ent | nf 0- >nane,
new Sear ch\ Fi el dType\ Ful | Text Fi el d()

).

Since we index full text data only on the Content document, you would register the service like this:

ny_webi nar _app. webi nar _event _title_fulltext_fiel d_napper

cl ass:
M\ Webi nar App\ Webi nar Event Ti t | eFul | t ext Fi el dMapper
argunents:
- " @zpublish. spi.persistence. content_handl er'
- ' @zpublish. spi.persistence.location_handl er’
tags:
- {nane:

ezpubl i sh. search. sol r.fi el d_mapper. content}

Providing feedback

After completing the installation you are now free to use your site as usual. If you get any
exceptions for missing features, have feedback on performance, or want to discuss, join our
community slack channel at https://fezcommunity.slack.com/messages/ezplatform-use/

https://ezcommunity.slack.com/messages/ezplatform-use/

	Solr Bundle

